CONTAINERISED CONTINUOUS
DELIVERY AT LOW COST AND
WEB SCALE!

MESOSPHERE

OBJECTIVES

At the end of this talk, you should be able to:

1. Understand how Apache Mesos & DC/OS, works
2. Deploy and configure a continuous deployment pipeline onto
DC/OS

WHY BOTHER?

Why is continuous delivery interesting now?

Google Trends for continuous delivery (blue) and continuous deployment (red)

WHY BOTHER?

1. It’s much easier to get compute resources nowadays!
e Doesn’t cost much (sometimes it’s even free - just ask a graduate student)
e EVERY platform and their dog has an API

MICrosortt
Azure

amazon) ==

webservices™

Google Cloud Platform

WHY BOTHER?

1. It’s much easier to get compute resources nowadays!
2. It turns out getting sleep is good for you!
e The National Sleep Foundation recommends 7-9 hours of sleep per night
e Container orchestrators take the manual pain out of waking up and rebooting

an application (to varying degrees of success)
e Letyourdevsdevand ops sleep!

kubernetes

AVAVA
AVAVAVA
VAVAVAV

VAVAVY

Tl
p)
p

WHY BOTHER?

1. It’s much easier to get compute resources
nowadays!
2. Itturns out getting sleep is good for you!
3. Containers mean you can!
e No need for humanstosshinand " apt-get
package install python-mylibrary123 .
e |sthisthe beginning of the robot uprising?

o 2

k" b’?.“‘“g i g [nervous metallic laugh]
BRING IT ON “HE HA HA”
ASSHOLE!"” '

®

MESOSPHERE DATACENTER OPERATING SYSTEM (DC/0S)

DC/OS Universe | & r o §€
e Datacenter-wide services to power your apps "'g N
HDFS Jenkins Marathon Cassandra Kubernetes Kafka
e Turnkey installation and lifecycle management
e Today’s most popular services (and those yet to come) J\Z 4 @ == Over 30
Windows others!
Spark Docker rkt Containers
Mesosphere DC/OS ()
. . . . Container Security & Monitoring & User Interface
e Container Operatlons & b|g data Operatlons Orchestration Governance Operations &CLI
e Faulttolerance & high availability -
. SN MESOS
e Open source & production proven at scale <

Any Infrastructure - '-) ==

o ReqUireS Only a modern Linux distro Physical Virtual Private Public Cloud Providers
(Windows coming soon) Servers Servers Cloud (Google, AWS, Azure)

DC/0S - THE DEFINITIVE PLATFORM FOR MODERN APPS

2000 2010 2013 2015 2016
Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center H ew l ett P a c k a r d
A Gl Amtony T, Ry Ko, Son Shenker o S Enter prise
University of Califomia, Berkeley
Thursday 30" September, 2010, 12:57 . . . ft D c / U S
mm Microso

DCOS Launched DC/0OS 0SS Project

Mesosphere

Proprietary Apache Mesos Project
Google facebook. » 4 () airbnb P Payral NETFLIX oo /\ AUTODESK
Borg & Tupperware
Omega & Bistro ¢ Time
g & Two siGMA f GROUPON verizon’ yelpit Warner
aple®

Bloomberg i5eT, @ esri UBER

APACHE
MESOS:
THE STORY OF

THE BIRTH OF MESOS

TWITTER TECH TALK

The grad students working on Mesos
give a tech talk at Twitter.

4 4

Spring 2009 é September 2010 é

APACHE INCUBATION

Mesos enters the Apache Incubator.

March 2010 ‘ December 2010
CS262B MESOS PUBLISHED
Ben Hindman, Andy Konwinski and Mesos: A Platform for Fine-Grained
Matei Zaharia create “Nexus” as their Resource Sharing in the Data Center is

CS262B class project. published as a technical report.

GRAD STUDENTS LEARNED HOW TO SHARE

Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center The Datacenter Needs an Operating System

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,

~_ Benjamin Hindman, ~Andy Konwinski, Matei Zaharia, Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica University of California, Berkeley

University of California, Berkeley

Sharing resources between batch What does an operating system provide?
processing frameworks: e Resource management

e Hadoop e Programming abstractions

e MPI e Security

e Spark e Monitoring, debugging, logging

CLUSTERING YOUR RESOURCES FOR YOU

Apache Mesos is a cluster resource manager.

It handles:

e Aggregating resources and offering them to schedulers
e Launching tasks (i.e. processes) on those resources
e Communicating the state of those tasks back to schedulers
e Tasks can be:
e Longrunningservices
e Ephemeral/batch jobs

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

scheduler

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

“Happy Monday! Here’s a bunch of work.”

@ > scheduler

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

scheduler

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

scheduler

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

scheduler

“Still got those spare reso h
task wantstoru h
know how it go

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

scheduler

A SIMPLE MESOS CLUSTER ON MONDAY MORNING

scheduler

FAIRNESS FOR ALL SCHEDULERS

scheduler A scheduler B scheduler C scheduler D scheduler E
v ‘\\ 4 /A ’,,4
—~ —_— — \\‘~\\ ’¢’ —————
- — \\\\‘~ I —” ———————
— — ~§~"‘~ - ===
- = ““‘\\ I /’: —————
« . , . . \\ N ;,ff
Looks like you’re not using your fair ¥

share of resources - want some more?”
master

agent agent agent agent agent

HELPING YOUR OPERATOR SLEEP WELL

scheduler A

ZooKeeper

© O

scheduler B

scheduler C

master 1

agent

“l just started! Who’s in charge around here?”

agent

scheduler D

agent

scheduler E

agent

agent

HELPING YOUR OPERATOR SLEEP WELL

scheduler A

ZooKeeper

© O

“Check in with master 1!”

scheduler B

master 1

agent

agent

scheduler C

agent

scheduler D

scheduler E

agent

agent

MESOS CLUSTERS CAN BE REALLY, REALLY LARGE

eeeeeeeee

o —— o — - o —— = - —— o —— o —— g — - o ——

Apache Mesos: The Story Of

NOT USING MESOS IS EXPENSIVE!

33%
22%
11%

® =

22%

100%
11%

E

66.667%

33.333%

33%

22%
'f 11%

0%

MARATHON
(OR, HOW T0 RUN
MICROSERVICES ON
MESOS)

MARATHON TALKS TO MESOS

Mesos can’t run applications on its own (!)

That’s where schedulers like Apache
Aurora and Marathon come in.

Marathon keeps your application running!
A bit like a distributed “init.d”.

INTERFACETO | .
YOUR
CLUSTER o

@ jenkins DCOS_PACKAGE_FRAMEWORK_NAM

Create Group Create Application

Healthy

@ marathon-lb DCOS_PACKAGE_IS_FRAMEWORK:tr

MARATHON MANAGES THE APPLICATION LIFECYCLE

@ > Marathon
N~

"container": {
"docker": {
"image": "ssk2/apachecon-demo:1.0",

¥
"type": "DOCKER"
¥ master
"cpus": 0.1,
"id": "apachecon-demo-app",
"instances": 1,
"mem": 128

apachecon-demo:1.0

agent agent agent agent agent

MARATHON MANAGES THE APPLICATION LIFECYCLE

oo
B> Marathon
SN~—rH
{
"container": {
"docker": {
"image": "ssk2/apachecon-demo:1.0",
¥
"type": "DOCKER"
¥ master
"cpus": 0.1,
"id": "apachecon-demo-app",
"instances": 5,
"mem": 128
}

apachecon-demo:1.0 apachecon-demo:1.0 apachecon-demo:1.0 apachecon-demo:1.0 apachecon-demo:1.0

agent agent agent agent agent

MARATHON MANAGES THE APPLICATION LIFECYCLE

oo
> Marathon
SN~—rH
{
"container": {
"docker": {
"image": "ssk2/apachecon-demo:2.0",
¥
"type": "DOCKER"
1, master
"cpus": 0.1,
"id": "apachecon-demo-app", 4‘&
"instances": 5, - SS -
"mem": 128 - -7 T~ --

apachecon-demo:1.0

-~ - - ~
- - 7 N
4 p A
apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0
_ apachecon-demo:1.0 apachecon-demo:1.0 apachecon-demo:1.0

agent agent agent agent agent

/
Al

MARATHON MANAGES THE APPLICATION LIFECYCLE

—
-—
~ —
-—
\\ ‘h

oo
> Marathon
SN~—rH
{
"container": {
"docker": {
"image": "ssk2/apachecon-demo:2.0",
¥
"type": "DOCKER"
}s master
"cpus": 0.1,
"id": "apachecon-demo-app",
"instances": 5, | S~ o
"mem": 128 - I S~ T T -— o _
} I ~ o~ -~ -
|

1

/
/
P
!
/
A

apachecon-demo:2.0

apachecon-demo:1.0

- -
7
4
apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0
apachecon-demo:2.0
apachecon-demo:1.0 apachecon-demo:1.0 apachecon-demo:1.0

agent agent agent agent agent

MARATHON MANAGES THE APPLICATION LIFECYCLE

oo
B> Marathon
SN~—rH
{
"container": {
"docker": {
"image": "ssk2/apachecon-demo:2.0",
¥
"type": "DOCKER"
}s master
"cpus": 0.1,
"id": "apachecon-demo-app",
"instances": 5, SSo~o
"mem": 128 S~ T T -— o _
} S ~<. @ TT==~_

apachecon-demo:2.0

agent

apachecon-demo:2.0

agent

apachecon-demo:2.0

agent

agent

apachecon-demo:2.0

/
Al

apachecon-demo:1.0

agent

MARATHON MANAGES THE APPLICATION LIFECYCLE

oo
D> Marathon
N~
{
"container": {
"docker": {
"image": "ssk2/apachecon-demo:2.0",
s
"type": "DOCKER"
¥ master
"cpus": 0.1,
"id": "apachecon-demo-app",
"instances": 5,
"mem": 128
}

apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0 apachecon-demo:2.0

agent agent agent agent agent

JENKINS ON

DC/0S

(AND WHY YOU
SHOULD PROBABLY BE

RUNNING IT LIKE THIS)

WHEN IT
BEGAN

Continuous
Integration is soooo
futuristic and this
interface is beautiful.

Jenkins master

TH E 0 I_D Oh, is that Jenkins i My builds take i
cluster stillup? 1 do + hourstorun!
WO RLD all my builds on a
i Life is good. .

Raspberry Pi now.
Jenkins master Jenkins master Jenkins master

: i l
Jenkins agent] Jenkins agent
—| Jenkins agent

Jenkins agent '
Jenkins agent

Jenkins agent

Jenkins agent

Jenkins agent

| Jenkins agent

—| Jenkins agent

| Jenkins agent

L

Jenkins master 1

Jenkins master 2

Jenkins master 3

\/

Mesos master

Jenkins agent (master
1)

Mesos agent

Jenkins agent (master
1)

Mesos agent

— | ——

Jenkins agent (master
E)

Mesos agent

Jenkins agent (master

Mesos agent

E)

JUST USE WHAT YOU NEED, WHEN YOU NEED IT AND SHARE THE LOVE RESOURCES

—N

Jenkins agent (master
3)

Mesos agent

L

. Team dinner!
. Let’s bounce. |

Jenkins master 1

Jenkins master 2

Jenkins master 3

/

Mesos master

Jenkins agent (master
E)

Mesos agent

Jenkins agent (master
E)

Mesos agent

— | ——

Jenkins agent (master
E)

Mesos agent

Jenkins agent (master

Mesos agent

E)

JUST USE WHAT YOU NEED, WHEN YOU NEED IT AND SHARE THE LOVE RESOURCES

—N

Jenkins agent (master
3)

Mesos agent

BUILDING

DOCKER IN This brave new world of containers running in
DOCKER ONE containers has a bit of a nesting problem.
WEIRD TRICK

We run everything inside a container to make it easy to
bundle dependencies and to isolate it from other
processes.

- & But when the thing that’s running wants to build a

container, what do you do?
uil '\1_
Yo dawg:I'nerd yowlike Docler, so |

putan Jenkins i_!l your ﬂgﬂliﬂl’ soyou
Gﬂllﬂgﬂ!}llﬂl‘ While you Docler

BU"_DING One recommended approach is to bind mount in the

DOCKER IN host system’s Docker daemon.
DOCKER: ONE
WEIRD TRICK

“docker run ssk2/apachecon-demo:f4ccd67"

Mesos agent

BUILDING
DOCKER IN
DOCKER: ONE
WEIRD TRICK

This doesn’t work for Mesos though! It doesn’t track
containers that it doesn’t launch.

The sibling container becomes orphaned and runs

forever.

~ ~ doc

Mesos agent

ker run ssk2/apachecon-demo:f4ccd67"

BUILDING
DOCKER IN
DOCKER: ONE
WEIRD TRICK

Our solution is to use a customised Docker-in-Docker
container.

This is a little slower but Mesos takes care of the
resources!

Mesos agent

CONTINUQUS
DEPLOYMENT

PIPELINE: A FIRST PASS

/
° [
— Commit »= gl — Trigger

1. Configuration
2. Build
3. Deploy

PUT marathon.json —»=

Build and push

¥

— Pull

J MARATHON

f Deployment
Monitoring

N

¥

DCOS Agents

A

Pull
1
1

Marathon-lb

A
http://my-app.my-domain.com
|

© 2015 Mesosphere, Inc. All Rights Reserved.

47

1. CONFIGURATION

Building a CD pipeline requires
configuration in a couple of places:

ﬁ ssk2 Pass through them variables.

B project Pa:

B gignore 1. Docker and Marathon files in your
&) Dockerfile Ups repo

Bl o 2. Build configuration in Jenkins*
i) £ *in the future, you’ll be able to check in your build configuration alongside

your repository too!

DEPENDENCY

MANAGEMENT Docker is becoming the de-facto container format for
packaging applications:

« Encapsulates dependencies
« Runsonyourlaptop
« Runsonyour cluster

DC/OS has native support for Docker.

m Just stick a Dockerfile (or two) in the root of your
repository!

DEPENDENCY
MANAGEMENT

FROM jekyll/jekyll
ADD site /srv/jekyll

APPLICATION
CONFIGURATION

Marathon application definitions are JSON files that
describe:

resources required

how many instances to run

what command to run

how to check your application is healthy

marathon.json should live in the root of your project
repository.

J MARATHON

"id": "apachecon-demo",

APPLICATION
CONFIGURATION F

"image": "ssk2/cd-demo:latest”,

"network": "BRIDGE",

"portMappings": [{
"containerPort": 80,

"protocol”: "tcp

3

}s
"labels": {

"HAPROXY_© VHOST":
"sunil-889-publicsl-781ifozhqg3z-1399492298.us-west-2.elb.amazonaws.com",

"HAPROXY_GROUP": "external"
¥
"instances": 1,
"cpus": 0.1,

"mem": 128

J MARATHON }

2. BUILDING

It’s trivial to install Jenkins on DCOS:

1. Create a JSON file:

{"jenkins": {"framework-name": "my-jenkins" }}
2. Install:

$ dcos package install --options=my-jenkins-config.json jenkins:

3. 7
4. Profit!

2. BUILDING

Now, set up Jenkins:

1. Save your Docker Hub credentials

2. Setup triggered build to build and push Docker image

docker build . -t ssk2/whereisbot:$(GIT_BRANCH)

docker push ssk2/whereisbot:$(GIT_BRANCH)

3. Setup triggered build to update marathon.json using jg and PUT to Marathon

http PUT https://dcos/service/my-marathon/v2/app/ssk2/whereisbot < marathon.json

2. BUILDING

Next, let’s create a build:

1. Setup a build that polls GitHub periodically to build and push Docker image

docker login -u ${DOCKER_HUB_USERNAME} -p ${DOCKER_HUB_PASSWORD} -e sunil@mesosphere.com
docker build -t ssk2/apachecon-demo:$(GIT_COMMIT) .

docker push ssk2/apachecon-demo:$(GIT_COMMIT)

2. Add a Marathon post deploy step pointing to the DC/OS Marathon:
e Setany variablesyou’d like to override.

3. DEPLOYING & MARATHON

When you PUT to Marathon’s API, you trigger a deployment.
http PUT https://dcos/service/my-marathon/v2/app/ssk2/whereisbot < marathon.json
Marathon attempts to scale application to desired state by:

e Launching new instances
e By default try to launch 100% of instances requested at once

e Killing old instances when new instances are healthy

THANK YOU!

Come and talk to us!
e Email me at
e Slides will be up at
e Checkout

57

mailto:sunil@mesosphere.io
http://mesosphere.github.io/presentations
https://dcos.io

