
Deploying Containers in 
Production and at Scale

sunil@mesosphere.io



© 2015 Mesosphere, Inc. 2

1. Mesosphere and the DCOS 

2. Running a Production Cluster: Four Themes



© 2015 Mesosphere, Inc.

About Me

• Engineer at Mesosphere who wants to make life 
easier for our users.


• Continuing fascination with datacenters.


• Managed an 800TB cluster once upon a time, 
now I just talk to people with large clusters!

3



© 2015 Mesosphere, Inc.

Dan

Wants happy Datacenter machines.

Seeks to always have enough headroom.

Prefers to avoid 3am wakeup calls.

Aims to provide top-level services - like app deployment 
platforms, CI, databases - to everyone else.

Doesn’t care about what individual workloads are actually 
doing: that’s for developers to worry about.

DATACENTER OPERATOR



© 2015 Mesosphere, Inc. 5

Mesosphere and the DCOS



© 2015 Mesosphere, Inc.

operating system 
 

“a collection of software that manages the computer hardware resources and provides common services for 
computer programs”

6



© 2015 Mesosphere, Inc.

datacenter operating system 
 

“a collection of software that manages the datacenter computer hardware resources and provides common 
services for computer programs”

7



© 2015 Mesosphere, Inc. 8

Kernel 



Mesos




DCOS Services


Marathon 
Chronos


Kubernetes

Spark

YARN


Cassandra

Kafka


ElasticSearch

Jenkins


...


Service Discovery

Mesos DNS





DCOS CLI
 DCOS GUI
 Repository


Security


System Image
 M
onitoring / Alerting


Open Source Components


O
perations


Mesosphere DCOS 





© 2015 Mesosphere, Inc.

Datacenter Operating System

Introduction to DCOS

9

• Native support for Docker containers


• Build around multiple open source projects:


• Apache Mesos (kernel)


• Mesosphere Marathon (init service)


• Mesos DNS (service discovery)



© 2015 Mesosphere, Inc.

Datacenter Operating System

Introduction to DCOS

10



© 2015 Mesosphere, Inc.

Datacenter Operating System

The Command Line for your Datacenter

11

• Easiest way to install distributed systems into a cluster


• One command installs of Spark, Cassandra, HDFS, etc.


• dcos package install spark

• More packages on their way!


• Myriad (YARN scheduler)


• ElasticSearch


• Provides tools to debug and monitor a DCOS cluster




© 2015 Mesosphere, Inc.

Datacenter Operating System

The Command Line for your Datacenter

12

• Provides tools to debug and monitor a DCOS cluster


• dcos marathon app list

• dcos service log spark

• Open source (Apache 2 licensed)


• Extensible!



© 2015 Mesosphere, Inc. 13

Apache Mesos: Datacenter Kernel



14© 2015 Mesosphere, Inc.



© 2015 Mesosphere, Inc.

Apache Mesos: Datacenter Kernel

Level of Indirection

15

Mesos%(slaves)%

coordinator%

Mesos%(master)%

coordinator%



© 2015 Mesosphere, Inc. 16



© 2015 Mesosphere, Inc.

Overview & Users

• A	
  top-­‐level	
  Apache	
  project	
  
• A	
  cluster	
  resource	
  nego4ator	
  
• Scalable	
  to	
  10,000s	
  of	
  nodes	
  
• Fault-­‐tolerant,	
  ba=le-­‐tested	
  
• An	
  SDK	
  for	
  distributed	
  apps

17

Apache Mesos: Datacenter Kernel



© 2015 Mesosphere, Inc. 18

Marathon: Init System



© 2015 Mesosphere, Inc. 19



© 2015 Mesosphere, Inc. 20



© 2015 Mesosphere, Inc.

Features

• Start,	
  stop,	
  scale,	
  update	
  apps	
  
• Nice	
  web	
  interface,	
  API	
  
• Highly	
  available,	
  no	
  SPoF	
  
• Na4ve	
  Docker	
  support	
  
• Rolling	
  deploy	
  /	
  restart	
  
• Applica4on	
  health	
  checks	
  
• Ar4fact	
  staging

21

Marathon: Init System



© 2015 Mesosphere, Inc. 22

Running a Production Cluster: Four Themes



© 2015 Mesosphere, Inc. 23

Running a Production Cluster: Four Themes

1. Dependency Management

2. Deployment

3. Service Discovery

4. Monitoring & Logging



© 2015 Mesosphere, Inc. 24

1. Dependency Management



© 2015 Mesosphere, Inc. 25

1. Dependency Management

a) Configuration of Servers


b) Application Dependencies



© 2015 Mesosphere, Inc.

1. Dependency Management

Configuration of Servers

• Still need to configure the underlying system image but it’s now much 
simpler!


• Use Chef or Puppet.

26

Use a configuration management system to build your 
underlying machines.



© 2015 Mesosphere, Inc.

1. Dependency Management

Application Dependencies

• Docker works really well!


• For non Dockerized applications, using a tarball is crude but works well.

27

Application developers should make no assumptions about the 
underlying system. Containers make this easy.



© 2015 Mesosphere, Inc. 28

2. Deployment



© 2015 Mesosphere, Inc.

2. Deployment

29

We need two things:

1. An artifact repository

2. A container orchestration system (i.e. Mesos)



© 2015 Mesosphere, Inc.

2. Deployment

30

a) Developer Workflow

b) Private Registries

c) Resource Limits

d) Resource Homogeneity

e) Noisy Neighbours

f) High Availability



© 2015 Mesosphere, Inc.

2. Deployment

Developer Workflow

• Use a source control system to track application and job definitions. These 
can either live in a central repository or in each projects' repository.

31

Make use of source control and continuous integration tooling 
to provide an audit log of what's being deployed to your cluster.



© 2015 Mesosphere, Inc.

2. Deployment

Private Registries

• Lots of machines pulling down containers. Docker Hub just won't suffice. 
You'll want to use a private registry backed by something like HDFS or S3.

32

Run an internal registry backed by a distributed file system.



© 2015 Mesosphere, Inc.

Think harder about how much of various resources your 
application really needs.

2. Deployment

Resource Limits
• Containers need to be sized appropriately. 


• Running an application on a virtual machine allows the application to grow as 
much as needed. Container resource limits will be enforced by killing the 
task.


• Some languages are better than this than others (e.g. Java)

33



© 2015 Mesosphere, Inc.

Leave some slack in your resource limits when deploying an 
application to account for performance differences between 

servers.

2. Deployment

Resource Homogeneity

• CPUs perform at different rates! Generally 1 core = 1 share but one core 
doesn’t necessarily equal another core.


• Same goes for memory!

34



© 2015 Mesosphere, Inc.

Leak some slack in your resource limits when deploying an 
application to account for noisy neighbours. Consider co-location 

constraints (or machine roles) to avoid worst case interference.

2. Deployment

Noisy Neighbours
• Just like VMs, containers suffer from the issues of noisy neighbours.


• Colocation between services is more frequent and interference becomes a 
really big problem. Networking isolation is still poor.


• Stanford’s David Lo has done some great research into what workloads work 
well with each other.

35

https://web.stanford.edu/~davidlo/


© 2015 Mesosphere, Inc.

It's up to the application writer to build in high availability 
functionality. ZooKeeper is a good start.

2. Deployment

High Availability
• A container based architecture will not make your applications more resilient.


• Mesos and Marathon are built to handle rolling upgrades. 


• However it's up to the application itself to handle failover and persistence of 
state.

36



© 2015 Mesosphere, Inc. 37

3. Service Discovery



© 2015 Mesosphere, Inc.

3. Service Discovery

38

Two approaches:

1. Static ports

2. Dynamic ports



© 2015 Mesosphere, Inc.

3. Service Discovery

Static Ports
• Each instance service is given a unique hostname and runs on the same, well 

known, port. 


• In order to co-locate multiple instances of service on same physical host, it is 
necessary to allocate one IP per container. 


• Typically using DNS A-records.

39

Less manual configuration but with static ports, unless you have 
one IP per container, you are limited to one instance of an 

application per machine.



© 2015 Mesosphere, Inc.

3. Service Discovery

Dynamic Ports
Routing to services running on unique ports usually requires maintaining a 
secondary, out-of-band, process:


1. Using a DNS server and SRV records. Application must be able to 
read SRV records. Most languages don't have good support for this 
(Go does).


2. Use a proxy or iptables that is fed by a secondary process (e.g. 
ServiceRouter) to remap well known ports to dynamically allocated 
ports.

40



© 2015 Mesosphere, Inc.

3. Service Discovery

Dynamic Ports

41

Applications must be written to accept ports dynamically. This 
may not be possible with legacy applications - which limits you 

to running one instance per host. 
 

DNS based approaches work well if your applications can 
handle SRV records. 

A combination of approaches will most likely be required.



© 2015 Mesosphere, Inc.

3. Service Discovery

Dynamic Ports (ZooKeeper/etc.d based)

• Use ZooKeeper or etc.d as a directory service / source of truth to store port 
mapping information. 


• Load is significant and if clients misbehave then these services may have too 
many open connections.

42

Ensure that ZooKeeper/etc.d clients are well behaved. Stick a 
distributed cache in front of ZooKeeper to reduce load.



© 2015 Mesosphere, Inc.

3. Service Discovery

Is Not Load Balancing

• Service discovery mechanisms primarily handle reachability of one service by 
another and don't typically route requests in an intelligent way.

43

Add some intelligence to your service discovery mechanism or 
use an external load balancer (e.g. ELB).



© 2015 Mesosphere, Inc. 44

4. Monitoring & Logging



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

45

Different when using containers:

1. Limited access to runtime environment

2. Metrics are different



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Utilisation vs Allocation

• It's hard to size applications correctly!


• Monitor running containers for CPU and memory usage to make sure they're 
correctly sized.

46

Monitor CPU and memory of running containers to ensure 
applications are correctly sized.



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Application Metrics

• Applications may be using all of their allocated capacity.


• This doesn't mean that they're necessarily mis-sized though.

47

Monitor application level metrics like throughput and latency to 
get a more meaningful idea of how your application is 

performing.



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Health Checks
• Health checks allow the container management system to automatically 

cycle and route around tasks that may be still be running but are broken at 
an application level. 


• Use these in combination with system/machine level monitoring to keep 
track of the state of a cluster.

48

Make health checks a mandatory part of the application 
deployment process.



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Tooling

• It's not feasible to ssh into machines. 


• Must provide tooling that allows users to introspect their containers. Mesos 
allows users to access their tasks' sandboxes (and the new DCOS command 
line interface provides similar functionality).

49

Make it easy for developers to access log output.



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Tooling

• It's not feasible to ssh into machines. 


• Must provide tooling that allows users to introspect their containers. Mesos 
allows users to access their tasks' sandboxes (and the new DCOS command 
line interface provides similar functionality).

50

Make it easy for developers to access log output.



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Consistency FTW

• Logging becomes significantly more important to debug application failures 
when you're running many containers on various hosts. 


• Ensure logging is approached in a standard way across applications and that 
log output is sufficiently descriptive to debug errors.

51

Mandate that applications log in a common way, either using a 
library or enforced best practices.



© 2015 Mesosphere, Inc.

4. Monitoring & Logging

Aggregate Logs

• Good practice in general to view logging output across a cluster. 


• If a machine dies, you'll lose logs. 


• Aggregate these logs centrally and make them accessible to the user.

52

Aggregate logs and expose these to your application developers.



© 2015 Mesosphere, Inc. 53

Summary



© 2015 Mesosphere, Inc. 54

Summary
1. Mesos and Marathon provide a great starting point.

2. Docker with a container orchestration system makes it 

easier to treat machines as “cattle”.

3. Resource requirements need more thought.

4. Developers need tooling to help debug application 

failures.

5. No right answer (yet) for service discovery.



© 2015 Mesosphere, Inc. 55

Special thanks to: 

• Ben Hindman 

• Brenden Matthews 

• Sam Eaton 

• Tyler Neely

Thank you!

Slides will be online at: 

mesosphere.github.io/presentations


